人工智能在3D打印中的工业应用
随着AI与3D打印的结合,可以预测各大制造公司的管理运营方式将发生巨大转变。从产品开发到配药,人工智能技术可以推动整个供应链。打印过程自动化也将减少人为错误的可能性,大大提高生产效率。人工智能在3D打印中的潜力不仅仅局限于制造和建筑行业,像健康、设计、建筑和航空航天等其他行业也可以从AI与3D打印的结合中获益。
利用机器学习进行3D打印的核心优势
增材制造领域正在迅速扩大,新的材料、技术和解决方案不断被涌现。从确定某项工作的最佳材料到通过消除人为错误来提高产品的构造质量,机器学习(ML)正在发挥其独特的优势。
在将3D打印的物体真正应用前,必须对其进行修复以消除孔洞和其他缺陷,这往往需要大量的人力物力,但现在这些困难都可以由ML自动识别和解决,节约了时间和金钱,因为它无需重新打印整个产品或花费数小时手动修复每个组件。通过根据经验进行微小的改动,可以使用机器学习来优化设计,最大化高质量的输出。预测性维护使用ML算法能够预测零件何时需要更换或维修才能完全失效,有助于组织计划并避免在等待更换组件时因昂贵的维修或停机而造成的损失。使用机器学习,公司可以利用消费者数据来创造满足他们需求的商品。简而言之,AI和ML在与3D打印结合使用时具有多种优势。
●AI故障远程检测
在3D打印过程中检测故障是必要的。Processes期刊介绍了一种基于AI的新型计算机视觉方法,用于在打印过程中评估熔丝制造(FFF)3D打印项目的质量。
通过分析过程捕获的视频,构建神经网络以发现整个打印过程中的3D打印问题。在打印过程中,3D打印的物品很可能会出现缺陷,比如拉丝。这些缺陷通常与打印参数之一或对象的几何形状相关联。在这种情况下,AI框架(深度卷积神经网络)在实时环境中开发和实施,以对实时摄像机流执行检测过程和预测。
原文链接:https://doi.org/10.3390/pr8111464
●支持AI的3D打印如何塑造正畸学的未来
与其他行业类似,创新的数字技术已经改变了医疗保健行业和正畸实践。人工智能(AI)和3D打印技术的最新突破对于增强正畸诊断和治疗计划,以及构建算法和制造个性化正畸产品具有重要意义。
人工智能在诊断牙颌面异常和设计矫形外科手术方面具有巨大的前景。卷积神经网络方法表明,正颌手术显着改善了大多数患者的外形和审美情趣。AI技术提高了正颌手术的临床准确性、使用3D模型(手术矫形器的3D制造)进行治疗规划以及治疗随访和图片叠加。
●基于AI的适印性检查
理论上,3D打印过程能够创建任何3D对象。然而,与传统生产工艺相比,3D打印由于其拓扑特性和特殊的材料需求,其开发利用仍然受到限制。Journal of Basis Applied Science and Management System上的最新文章向读者介绍了可打印性检查器(PC)程序,该程序可确定对象是否适合3D打印或其他生产方法。
它由特征提取器(FE)、打印机管理器(PM)和验证器引擎(VE)组成。PC根据标准的复杂性值的结果进行判断。计算复杂性取决于多个指标的选择,例如测试的运行时间。具体而言,有限元的目标是检索给定3D对象的科学可测试特征。PM负责使用适用的限制来管理打印机,然后将打印机配置文件发送给VE。同时,VE可以匹配FE和PM的特性和局限性,根据最终的复杂度结果验证3D物体的可打印性。
●人工智能如何影响航空航天零件的3D金属打印?
Journal of Physics:Conference Series收录了一篇文章,介绍了工智能在3D金属打印中的集成已被视为一种潜在的发展,因此成为航空航天技术进步的基础。3D打印与人工智能相结合,使航空航天制造商能够以更低的成本和更少的浪费生产更准确、更精确的航空部件,并提高设计自由度。传感器和摄像头安装在3D打印机内,通常靠近粉末原料和激光束合并形成固体层的喷嘴附近,以提供过程控制和监视。然后将数据发送到专门的软件,实时评估和解释各种现象,认识到问题并利用人工智能的力量来解决它们。
原文链接:10.1088/1742-6596/1892/1/012015
●麻省理工学院:基于人工智能的新型材料3D打印
麻省理工学院的研究人员创建了一种机器学习算法实时分析和更改3D打印过程以修复故障。科学家和技术人员一直在发明可用于3D打印的具有独特品质的新材料。然而,了解如何制造这些物质可能是一项困难且昂贵的挑战。使用人工智能,麻省理工学院的研究人员现在已经简化了这项技术。开发一个机器学习系统,使用计算机视觉来监控生产过程并实时修复材料处理故障。通过模拟,研究人员教会神经网络如何修改打印设置以减少错误,然后将该控制器应用于真正的3D打印机。该技术比以前的任何3D打印控制器产生更精确的打印件。
人工智能在3D打印中应用的挑战
使用ML方法可知数据驱动的数值模拟比基于物理的数值模拟在计算上更有效。原位分析和闭环调节高度依赖于计算工作。由于数据集更大,使用高速摄像机检查水池需要更多的处理资源。这种使用大数据收集的应用程序需要改进机器学习算法。计算成本是在增材制造中实施AI的重大障碍。
数据交换对于大型数据库的开发至关重要,而大型数据库是ML算法运行所必需的。随着越来越多的研究小组专注于新型材料和工艺的创造,数据收集和预处理的标准将确保数据共享并促进AM社区内的协作。许多ML框架彼此不兼容。为了在研究社区中传播ML模型,建立一致的框架至关重要。缺乏标准是一个重大问题,需要立即采取措施解决这一重大问题。
机器学习(ML)算法的性能与输入数据的质量一样出色。涉及熔融过程的3D打印程序中使用的传感设备必须具有快速刷新率和出色的分辨率,以便从熔池中收集信息。尽管使用的传感器种类繁多,但每种现场监测方法都有局限性,阻碍了其在实际生产线上的应用。
市场分析
Fortune Business Insights对全球3D打印市场以及AI自动化3D打印行业进行了全面分析。2021年,全球3D打印市场估计为151亿美元。预计从2022年到2029年,复合年增长率为24.3%,从2022年的183.3亿美元增长到2029年的839亿美元。
2021年自动化3D打印市场价值7.0669亿美元,预计到2027年将达到58.7856亿美元,2022年至2027年的复合年增长率为41.76%。制造业人工智能的市场规模预计将达到163亿美元2027年,根据Research and Markets发布的最新报告,2022年至2027年的复合年增长率为47.9%!
未来展望
人工智能正在为增材制造行业提供优势,未来的研究应集中于:
●结合基于AI的可打印性测试、切片和路线规划,以加速并行切片并优化3D打印路径。
●使用面向服务的架构(SOA)通过基于云的设计和生产系统来提高3D打印的适应性、集成性和个性化。
●通过指数技术、并行化和切片算法的改进来改进基于ML的计算预制(过程规划),进一步为快速的全球工业化开辟道路。
简而言之,人工智能和3D打印的交叉已经成为成功的秘诀,世界各地的机构都在投资这一特定领域。

铁锚
大桥
金桥
京雷
天泰
博威合金BOWAY
马扎克Mazak
威尔泰克
迈格泰克
斯巴特
MAOSHENG贸盛
Miller米勒
新世纪焊接
西安恒立
上海特焊
新天激光
海目星激光
迅镭激光
粤铭YUEMING
镭鸣Leiming
领创激光
天琪激光
亚威Yawei
邦德激光bodor
扬力YANGLI
宏山激光
楚天激光
百超迪能NED
金运激光
LVD
Tanaka田中
BLM
易特流etal
百盛激光
Messer梅塞尔
PrimaPower普玛宝
创力 CANLEE光纤激光切割机
川崎工业焊接机器人 焊接管架
松下 旗下LAPRISS机器人激光焊接系统
KUKA 库卡摩多机器人流水线作业
大焊 焊机匠心品质 精工之作 行家之选
上海通用电气 全焊机系列展示
全自动焊接流水线
bw CuSn1 (HS201)紫铜焊丝焊接工艺性能优良
PANASONIC/松下逆变直流氩弧焊机 日本松下氩弧焊机YC-315TX氩弧焊机
鼎东光钎激光切割机 数控光纤激光切割机 源头厂家
锋元焊接机器人 旋转双工位焊接工作站FY-16002 焊接机器人 焊接设备 旋转焊接机器人
供应“安川”MH80工业机器人、焊接机器人、搬运机器
co2激光切割机 金米兰光纤激光切割机
瑞凌东升 WSME-400交直流脉冲氩弧焊机 铝焊机 多功能氩弧焊机厂家
东禾 塑料焊条价格_pp pvc塑料焊条厂家_pp pvc塑料焊条颜色及批发







