作者:学术头条
编辑:桃子
【新智元导读】无限猴子定理认为,让一只猴子在打字机上随机地按键,当按键时间达到无穷时,几乎必然能够打出任何给定的文字,比如莎士比亚的全套著作。
在「无限猴子」定理中,「几乎必然」是一个有特定含义的数学术语,「猴子」也不是指一只真正意义上的猴子,而是被用来比喻成一台可以产生无限随机字母序列的抽象设备。
![]()
一只黑猩猩随机打字,只要时间足够,几乎必然可以打出法国国家图书馆中的每本书
这个理论说明,把一个很大但有限的数看成无限的推论是错误的,即使可观测宇宙中充满了一直不停打字的猴子,它们能够打出一部《哈姆雷特》的概率仍然少于 1/10^183800。
而且,即使给无数只猴子无限的时间,它们也不会懂得如何欣赏吟游诗人诗意的措辞。
「人工智能(AI)也是如此,」 牛津大学计算机科学教授 Michael Wooldridge 这样说道。
![]()
Michael Wooldridge
在 Wooldridge 看来,虽然 GPT-3 等 AI 模型借助数百亿或数千亿的参数展现出了令人惊讶的能力,但它们的问题不在于处理能力的大小,而在于缺乏来自现实世界的经验。
例如,一个语言模型可能会很好地学习「雨是湿的」,当被问及雨是湿的还是干的时,它很可能会回答雨是湿的,但与人类不同的是,这个语言模型从未真正体验过「潮湿」这种感觉,对它们来说,「湿」只不过是一个符号,只是经常与「雨」等词结合使用。
然而,Wooldridge 也强调,缺乏现实物理世界知识并不能说明 AI 模型无用,也不会阻止某一 AI 模型成为某一领域的经验专家,但在诸如理解等问题上,如果认为 AI 模型具备与人类相同能力的可能性,确实令人怀疑。
相关研究论文以「What Is Missing from Contemporary AI? The World」为题,已发表在《智能计算》(Intelligent Computing)杂志上。
在当前的 AI 创新浪潮中,数据和算力已经成为 AI 系统成功的基础:AI 模型的能力直接与其规模、用于训练它们的资源以及训练数据的规模成正比。
对于这一现象,DeepMind 研究科学家 Richard S. Sutton 此前就曾表示,AI 的「惨痛教训」是,它的进步主要是使用越来越大的数据集和越来越多的计算资源。
![]()
AI 生成作品
在谈及 AI 行业的整体发展时,Wooldridge 给出了肯定。「在过去 15 年里,AI 行业的发展速度,特别是机器学习(ML)领域的发展速度,一再让我感到意外:我们不得不不断调整我们的预期,以确定什么是可能的,以及什么时候可能实现。」
但是,Wooldridge 却也指出了当前 AI 行业存在的问题,尽管他们的成就值得称赞,但我认为当前大多数大型 ML 模型受到一个关键因素的限制:AI 模型没有真正体验过现实世界。
在 Wooldridge 看来,大多数 ML 模型都是在电子游戏等虚拟世界中构建的,它们可以在海量数据集上进行训练,一旦涉及到物理世界的应用,它们就会丢失重要信息,它们只是脱离实体的 AI 系统。
以支持自动驾驶汽车的人工智能为例。让自动驾驶汽车在道路上自行学习是不太现实的,出于这个和其他原因,研究人员们往往选择在虚拟世界中构建他们的模型。
「但它们根本没有能力在所有最重要的环境(即我们的世界)中运行,」Wooldridge 说道。
![]()
来源:Wikimedia Commons
另一方面,语言 AI 模型也会受到同样的限制。可以说,它们已经从荒唐可怕的预测文本演变为谷歌的 LAMDA。今年早些时候,一个前谷歌工程师声称人工智能程序 LAMDA 是有知觉的,一度成为了头条新闻。
「无论这个工程师的结论的有效性如何,很明显 LAMDA 的对话能力给他留下了深刻的印象——这是有充分理由的,」 Wooldridge 说,但他并不认为 LAMDA 是有知觉的,AI 也没有接近这样的里程碑。
「这些基础模型展示了自然语言生成方面前所未有的能力,可以生成比较自然的文本片段,似乎也获得了一些常识性推理能力,这是过去 60 年中 AI 研究的重大事件之一。」
这些 AI 模型需要海量参数的输入,并通过训练来理解它们。例如,GPT-3 使用互联网上千亿级的英语文本进行训练。大量的训练数据与强大的计算能力相结合,使得这些 AI 模型表现得类似于人类的大脑,可以越过狭窄的任务,开始识别模式,并建立起与主要任务似乎无关的联系。
![]()
来源:OpenAI
但是,Wooldridge 却表示,基础模型是一个赌注,「基于海量数据的训练使得它们在一系列领域具备有用的能力,也进而可以专门用于特定的应用。」
「符号人工智能(symbolic AI)是基于‘智能主要是知识问题’的假设,而基础模型是基于‘智能主要是数据问题’的假设,在大模型中输入足够的训练数据,就被认为有希望提高模型的能力。」
Wooldridge 认为,为了产生更智能的 AI,这种「可能即正确」(might is right)的方法将 AI 模型的规模不断扩大,但忽略了真正推进 AI 所需的现实物理世界知识。
「公平地说,有一些迹象表明这种情况正在改变,」 Wooldridge说。今年 5 月,DeepMind 宣布了基于大型语言集和机器人数据的基础模型 Gato,该模型可以在简单的物理环境中运行。
「很高兴看到基础模型迈出了进入物理世界的第一步,但只是一小步:要让 AI 在我们的世界中工作,需要克服的挑战至少和让 AI 在模拟环境中工作所面临的挑战一样大,甚至可能更大。」
在论文的最后,Wooldridge 这样写道:「我们并不是在寻找 AI 道路的尽头,但我们可能已经走到了道路起点的尽头。」
对此,你怎么看?欢迎在评论区留言。
声明:凡资讯来源注明为其他媒体来源的信息,均为转载自其他媒体,并不代表本网站赞同其观点,也不代表本网站对其真实性负责。您若对该文章内容有任何疑问或质疑,请立即与全球焊接网(www.robot-china.com)联系,本网站将迅速给您回应并做处理。电话:021-39553798-8007更多>相关资讯
| • meta 发布全新 AI 平台,可自由在英伟达及 AMD | • 特斯拉人形机器人带火业态?国内从业者:量产和 |
| • 张沃仁:AI智能照明,将迸发出新的商业机会 | • 微软借AI改善Win11/10版Teams网络通话质量 |
| • meta发布新AI,输入一句话可生成5秒短视频 | • 特斯拉机器人全球首秀 3至5年可量产上市!万亿 |
| • 白宫官员:将很快公布向中国出口AI芯片规范细节 | • 直击特斯拉AI日:人形机器人“擎天柱”亮相 |
| • AI又立功了:将10万个方程缩减到4个 | • AI创作更进一步 图片之后视频也被“拿捏” 汇集 |

铁锚
大桥
金桥
京雷
天泰
博威合金BOWAY
马扎克Mazak
威尔泰克
迈格泰克
斯巴特
MAOSHENG贸盛
Miller米勒
新世纪焊接
西安恒立
上海特焊
新天激光
海目星激光
迅镭激光
粤铭YUEMING
镭鸣Leiming
领创激光
天琪激光
亚威Yawei
邦德激光bodor
扬力YANGLI
宏山激光
楚天激光
百超迪能NED
金运激光
LVD
Tanaka田中
BLM
易特流etal
百盛激光
Messer梅塞尔
PrimaPower普玛宝
全自动焊接流水线
创力 CANLEE光纤激光切割机
川崎工业焊接机器人 焊接管架
松下 旗下LAPRISS机器人激光焊接系统
上海通用电气 全焊机系列展示
KUKA 库卡摩多机器人流水线作业
大焊 焊机匠心品质 精工之作 行家之选
怎么卖汽油自发电电焊机单价230A 发电焊机品牌
供应洛阳博塔滚轮架
大量出售 多款供选J系列滚轮架减速机
ABB激光焊接机器人 弧焊机器人 开封
仕创艾 C9激光切割机 亚克力激光切割机 不锈钢激光切割机
供应龙太电气标准气保焊机
瑞凌东升MIG-250A弧焊机气保焊机二保焊机气体保护焊机一体机 二保焊/电焊两用焊机多功能焊机
上海通用电焊机逆变直流手弧焊机ZX7-315DL 电焊机







